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A MATHEMATICAL MODEL OF THE PROCESSES OF FATIGUE WEAR 

AND DISINTEGRATION 

!. I. Kudish UDC 531:539.3 

An analysis was conducted in [i, 2] into the behavior of the coefficients of stress 
intensity at the tips of subsurface cracks, located in an elastic overstressed half plane 
whose boundary is affected by normal and tangential contact stresses. These stress-inten- 
sity factors determine the development of cracks in an elastic medium and, thus, the fatigue 
quasibrittle destruction of bodies in contact with each other. Moreover, fatigue destruc- 
tion of bodies depends on the level of material contamination and its resistance to crack 
formation. 

In the present article we have laid out a statistical mathematical model for the pro- 
cesses of fatigue wear and disintegration, based on a study of a uniform mechanism for the 
development of fatigue cracks in quasibrittle materials. 

i. The Suitability of Applyin_~ the Mechanics of Quasibrittle Destruction to the StudE 
of Contact Fatigue. The main premise of the theory of fatigue destruction is the formation 
and the development of scattered microcracks, initiated by various defects (nonuniformities) 
in the material: microscopic pores, pitting, carbides, nonmetallic inclusions, etc. The 
process involved in the development of fatigue cracks around such defects is governed by 
the properties of the material and the stressed state of the material in the immediate vicin- 
ity of the defects, and this, in turn, depends on the normal and tangential stresses at 
the contact, as well as on residual stresses within the material. 

The experimental and theoretical research [2-4] carried out to date enables us to iso- 
late the fundamental factors characterizing fatigue destruction under loads which generate 
no significant plasticity phenomena in the material, and we have specific reference here 
to: normal and tangential contact stresses, residual stresses, the level of material con- 
tamination in the contact bodies and lubricants, the parameters of cyclical resistance to 
crack formation in the material, the structure of the material, etc. 

Let us ascertain the possibility of utilizing the results obtained in the solution 
of contact problems for elastic bodies with cracks, based on the linear mechanics of quasi- 
brittle destruction, insofar as this pertains to our study of the processes of contact fatigue. 

I.i. Relative duration of crack generation and propagation phases. A variety of 
statements can be found in the literature, including those that are contradictory [5-7]. 
The assertion of the predominance of the generation phase, as a rule, is speculative in 
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this case [5], while the opposite opinion is based on experimental data [6, 7] which demon- 
strate that the phase for the development of fatigue cracks consumes no less than 80-90% 
of the total time prior to destruction. In the following we will therefore make the assump- 
tion that the time to destruction coincides with the time required to propagate the fatigue 
cracks, and we will neglect the time of crack generation. 

1.2. Initiators of destruction. Let us analyze this question by using steel as an 
example. In addition to the pitting and micropores, among the dangerous defects we should 
include the inclusions that are formed on a base of various chemical compounds. It has 
been established that the most frequent initiators of contact fatigue are the oxide inclu- 
sions and brittle carbides [8, 9]. This is explained by the lower level of temperature 
expansion for these inclusions in comparison to the steel matrix [3], which leads to the 
appearance about these inclusions of substantial tensile stresses and the rapid appearance 
of microcracks. Moreover, as shown by numerous experimental studies, the characteristic 
distances between the defects in the steel are large in comparison to their intrinsic values, 
thus making it possible, in studying the processes of fatigue, to use asymptotic methods 
and the results from [i, 2]. 

1.3. The microstructure of the material. According to the data from [i0, ii], the 
boundaries of the ferrite grains, having dimensions of 1.2-48.5 ~m, exerted no significant 
influence on the propagation of fatigue cracks. 

Results have recently been obtained which indicate a positive effect from residual 
austenite on the fatigue lifespan of rocker bearings [8]. We can take this effect into 
consideration in the crack-resistance parameters included in the kinetic equation of crack 
development [4]. Information relative to the effect of alloying elements remains, for the 
moment, inadequate, and such as exists, is quite contradictory (see, for example, [8]) in 
order to be able to introduce this information into the fatigue-destruction model. 

Thus, the microstructure of a material can be taken into consideration, at the present 
time, in the fatigue destruction model only in terms of its crack-resistance parameters. 

1.4. The suitability of the mechanics of quasibrittle destruction, based on the dimen- 
sion rp of the plastic zone at the tip of the crack. According to [12], the radius rp of 
the plastic zone at the tip of the crack in a plane stressed state is calculated in accord- 
ance with the formula 

rp ( /6~)(kJ~Y )~' (1.4.1) 

where k i is the coefficient of stress intensity for normal separation at the tip of the 
crack; Oy is the yield stress of the material. Formula (1.4.1) is obviously valid only 
for the conditions under which the plastic zone at the tip of the crack is small in compari- 
son with the half length s of the crack, i.e., 

2r/l<<i. (1.4.2) 

The estimate (1.4.2) must be tested in both the development stage of relatively small cracks, 
on which most of the time prior to destruction is spent, as well as on the concluding stage 
of the destruction process, i.e., prior to the break, where k I ~ Kfc (Kfc is the critical 
value of the coefficient of stress intensity at the tip of the crack under cyclical load, 
Kfc < Kic). For the first of these stages, with the aid of (1.4.1), we obtain 

i (1.4.3) 

(q represents the maximum Hertz stress and k i' is the dimensionless intensity factor: k I = 
k1'qs Inequality (1.4.3) follows out of the condition that there are no macroscopic 
plastic grains. We will now specify the coefficient of friction X = 0.01 characteristic 
for the conditions of lubrication and we will also specify the angle of crack orientation 
a = ~/2 (i.e,, the angle between the direction of the crack and the positive direction 
of the Ox axis in the system of coordinates coincident with the surface of the body). With 
such an a, as shown by the calculations in [i, 2], the maximum values of ki' are attained 
under the condition that the residual stresses q0 = 0. In view of the fact that the residu- 
al compression stresses exhibit a tendency to increase [13] as the process proceeds, the 
adopted assumption (q0 = 0) corresponds, as a rule, to higher kl'. The presence of compres- 
sive stresses in the surface layers of the material is associated with various aspects of 
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the operation~j13, 14]. Finally, bearing in mind the relatively weak dependence of k i' 
on 6 o = ~/b (b is the half-width of the Hertz contact region, or the minor semiaxis of 
the contact ellipse) and on the depth of crack penetration y0, = y0/~, we will specify 
the values of 6o = 0.i and y0, = -0.5. The calculations from [i, 2] then yield maxki' = 
5.5.10 -s and with the aid of (1.4.3) lead to the inequality2rp/~=3.03.10 -9 ~ i. Esti- 
mate (1.4.2) is satisfied at this stage of the process. 

When k I = Kic, for example, for the case of martensite aged steel (Kic = 76 MPa'm I/2, 
Oy = 1.8 GPa), we find 2rp = 189 pm from (1.4.1). The resulting rp is comparable to the 
characteristic dimensions of the Hertz contact zones. Satisfaction of estimate (1.4.2) 
will therefore lead to the breaking of one of the conditions validating the asymptotic 
analysis [i, 2], i.e., the condition that 6o = ~/b ~ I. However, when we take into con- 
sideration that the rate of crack growth at the break is very high, and that the time spent 
on the break is small, it is possible, with adequate accuracy for practical purposes, to 
leave out of the calculation the violation of the condition 60 ~ i. In other words, we 
will estimate (1.4.2) to be satisfied throughout the entire process of fatigue crack de- 
velopment, carrying out the calculations in accordance with the asymptotic formulas from 
[i, 2] in the assumption that 6o ~ 1 applies also throughout the entire destruction pro- 
cess. 

Thus, as we study the processes of contact fatigue we can make use, with accuracy 
adequate for practical purposes, of the linear mechanics of quasibritt!e destruction. 

2. Mathematical Model of the Contact Fatigue Process. The statistical model of de- 
struction must include both a description of the elementary acts of destruction, i.e., 
the process of fatigue crack development, as well as the statistics for the given element- 
ary destruction occurrences. Examples of such an approach, oriented toward use in struc- 
tures, can be found in [15, 16]. Moreover, in fatigue analysis we frequently resort to 
the concept of material damage [16]. 

2.1. The elementary destruction event. A rather complete review of the kinetic equa- 
tions for the development of fatigue cracks can be found in [4]. In general form, the 
study of the development of a fatigue crack reduces to the solution of the Cauchy problem 

~z/mv = g (h) ,  Zb=o = ~o ( 2 . 1 . 1 )  

(the function g for each specific form of the kinetic equation has its own form and N repre- 
sents the number of loading cycles). 

In the case of contact fatigue k i is determined from solution of the contact problem 
for elastic bodies subjected to cracking. When we take into consideration the assumption 
as to the smallness of the dimensions of the fatigue crack in comparison to the dimensions 
of the contact region, we find [i, 2] that the coefficients of intensity at the tips of 
the crack are quite close to one another and, on the whole, can be presented in the form 

kl = k1~ (2.1.2) 

[ki0 depends on N and e, the coordinates for the location of the crack center (x, y), and 
is independent of ~]. 

According to [12, 17], the direction of fatigue-crack development (the angle ~) after 
a relatively few cycles can be found from the equation 

~(N,  x, F, ~) = O, ( 2 . 1 . 3 )  

where the coefficient of shearing stress intensity k 2 will also be approximated by the 
single-term asymptotic expansion [I, 2], calculated at the point (x, y). Having solved 
(2.1.3) for e, we have two angles e I and e2: e2 - ~i = ~/2. In this case, for the solu- 
tion we will select the angle at which k i is at its maximum. We will assume the crack 
to be rectilinear throughout the entire process of its development. This assumption is 
in agreement with the hypothesis of crack smallness in comparison to the dimension of the 
contact region and, consequently, owing to the expression for k 2 [I, 2] in the single-term 
approximation with a constant load amplitude, where the angle ~ is independent of N, i.e., 
e = ~(x, y). We will subsequently assume that the independence of e from N exists also 
in the case of a time-variable load amplitude. In this case, for the e = ~(x, y) we can 
choose, for example, a value averaged in some fashion and derived from the angles ~i = 
ei(x, y), corresponding to loads with i-th amplitudes. 
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If we take into consideration that (2.1.1) includes the maximum k i for the cycle when 
a = a(x, y), we will assume (2.1.1) to have been written for max kl. 

x 

2.2. The probability of destruction. Let us assume that the probability of this 
process proceeding for some number of cycles without destruction by some component part 
(the specimen) is a function of the local destruction within the material. 

Let the probability of an absence of destruction at the point (x, y) on elapse of 
N cycles be p(N, x, y). Then 

p ( N  + AN,  x, y ) =  po(N' AN,  x, y )p(N,  x, y), ( 2 . 2 . 1 )  

where p0(N, AN, x, y) is the conditional probability for the absence of destruction at 
the point (x, y) within AN cycles, beginning from a state corresponding to the elapse of 
N loading cycles. We will relate the probability p0(N, AN, x, y) with the accumulation 
of damage in the following manner: 

Po(N, A N ,  x,  y) = i - -  A N y ( N ,  x, y) ( 2 . 2 . 2 )  

[v(N, x, y) i s  the  r a t e  of  m a t e r i a l  damage accumula t ion  a t  t he  p o i n t  (x,  y) on e l apse  of  
N c y c l e s ] .  When we s u b s t i t u t e  ( 2 . 2 . 2 )  i n t o  ( 2 . 2 . 1 )  and approach the  l i m i t  ~N § 0, we o b t a in  

p ( N , x , y ) = p ( 0 ,  x,y) exp - -  v ( s , x , y )  ds , 
9 

( 2 . 2 . 3 )  

p(0, x, y) is the probability of the absence of destruction at the point (x, y) at the 
beginning of the loading process, for which, without loss of generality, we assume 

p(0, z , y ) - - e x p  -- u(s ,x,y)  ds . ( 2 . 2 . 4 )  

N 

the determination solely of the damage to the material ~ vds Thus, the problem reduces to 

for any given N at each point (x, y). -~ 

2.3. Material damage and its probability p(N, x, y). Let us introduce three scales 
of length: La, LI, and L 2. We will assume L0 to be commensurate with the characteristic 
dimension of the problem, e.g., with the dimension of the contact region, that L 2 is com- 
mensurate with the characteristic dimension of the micrononuniformities of the material 
(for steel this may be the dimension of the martensitic spicules), while we choose L I in 
a manner such that L 2 ~ L I ~ L0 and that within the volume of the Lz 3 material there be 
present a sufficiently large number of defects (cracks). We will subsequently make no 
distinction between the cracks themselves and the various kinds of defects within the ma- 
terial that lead to fatigue cracks. 

Let us examine a volume of material with the characteristic linear dimension LI, identi- 
fying it with the material point. We will introduce the concept of the density probability 
function for the distribution of the number of cracks on the basis of the s dimensions 
in a single volume with its center at the point (x, y) after N loading cycles have elapsed, 
and we will denote this function f(N, x, y, s The number of cracks in a unit volume 
with length in the range [s Z + ds is f(N, x, y, s163 Therefore, 

• / ( N ,  x, y, I) dl = n ( N ,  x, y) ( 2 . 3 . 1 )  
0 

[n(N, x, y) represents the crack density]. 

Let us assume that the cracks do not interact with one another, i.e., they are separated 
fromeach other through distances substantially in excess of their own dimensions. This 
results in a situation in which it is impossible for the cracks to merge into each other. 
We will also assume that the dimensions of the cracks, in the process of their development, 
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remain substantially smaller than L 0 (see Sec. 1.4). Moreover, we will neglect the possi- 
bility of crack branching. By means of these assumptions we arrive at the conclusion that 
the quantity of cracks in the given volume is conserved in the process of their cyclical 
loading. Hence we find 

/(N, x, g, l)dl = /(0, x, g, lo)dl o ( 2 . 3 . 2 )  

[s i s  s u b j e c t  to  t he  Cauchy problem ( 2 . 1 . 1 ) ] .  From ( 2 . 3 . 2 )  we ob t a in  f(N, x, y,  s = f ( 0 ,  
x, y,  s163163 and n(N, x, y) = n(0,  x, y ) .  

The c r i t i c a l  h a l f  l e n g t h  of  the  crack s = s x, y) w i l l  be t h a t  h a l f  l e n g t h  which 
a t  the  p o i n t  (x,  y) g ives  us kl  = Kfc. From ( 2 . 1 . 2 )  we then  have 

Ik = (Kio!k1~ (2.3.3) 

By definition, when the crack reaches values of s catastrophic unstable destruction occurs. 
It is obvious that if at the point (x, y) there exist no cracks with a half length exceeding 

s x, y), then I ](N, x, y, l)dl = 0 and p(N, x, y) = i. Conversely, if at the points being 
I k !~ 

analyzed the lengths of all cracks exceed s x, y), then [/(N, x, y, l)dl = n(0, x, y) and 
I h 

p(N, x, y) = 0, i.e., at the point (x, y) we have disintegration. In the general case, 

with an increase in the integral S/(N,x,y, l)dl , p(N, x, y) will diminish. The material 
N l h 

damage ~ v(s, x, y)ds is a monotonically increasing function of the integral j ] (N,  x, y, l)dl. 

Consequently, from (2.2.3) and (2.2.4) we obtain 

( 2 . 3 . 4 )  

[G(x) is a monotonically increasing function of x; G(0) = 0, G(n) = +~]. Various approxima- 
tions are possible for the function G, and of these the simplest is G(x) = -in (i - x/n). 
Here, with the aid of (2.3.1) and (2,3.4), we find 

lh(N,x,Y)  

p (N, x, g) = f / (N, x, g, l) dl /n (0, :c, g). ( 2 . 3 . 5 )  
o 

The determination in (2.3.5) of the probability p(N, x, y) is most natural and is 
given by the initial distribution of the defects within the material. Indeed, let s = 
s x, y) be the initial half length of the crack at the point (x, y), and within N 
cycles of loading this will reach s Then, from (2.3.2) and (2.3.5) we will have 

10h(N,x,Y) 

p (5 ~, ~, ~) = j" i (0, ~, y, lo) dlom (0, ~, ~). ( 2 . 3 . 6 )  
o 

Let us note that this model of fatigue destruction serves as the basis for the descrip- 
tion of various forms of fatigue. Moreover, we should underscore that the two-dimensionality 
of the formulation in the construction of the statistical model of fatigue destruction 
has not, essentially, been employed anywhere. The analysis that we have carried out here, 
with trivial modifications, can be extended to the case of three measurements. 

3. Wear and Disintegration. The processes of wear and disintegration are described 
in various ways, although fundamentally they are all based on the single mechanism of fatigue 
crack development. Fatigue disintegration is usually characterized by the probability 
P(N) of product utilization without failure over N loading cycles, while wear, as a rule, 
is evaluated on the basis of the depth of Y(N, x) at a given point on the surface at which 
the material has become worn (linear wear). 
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The products (foci) of the destruction will be characterized by two geometric param- 
eters: by the thickness, which we will estimate from the depth y of the crack center and 
by the length that is related to the critical dimension of the crack: 

= t~(N, x, u ) =  Z~(N, ~, u -  Y ( ~ ,  ~)). ( 3 . 1 )  

For  e a c h  p o i n t  on t h e  s u r f a c e  o f  t h e  componen t  p a r t  y = Y(N, x)  we w i l l  i n t r o d u c e  t h e  s e t  

~x = ~x (N' Y*' ~*): 

O, = {Y]0 < Y (N, x) - -  y <-.~y,, ]a <~ /,}" 
(3.2) 

The number of disintegration products with a thickness of 0 < Y(N, x) - y ~ y, and a length 
of 2s k ~ 2s which becomes separated from a unit area ~ of the working surface will be 
defined as 

r ( ~ , y , , z , ) = . I d x  j" ~(0, x, y) [~ --  7 (N, x, ~>l dy 

[p(N, x, y) is the probability of an absence of destruction at the point (x, y) after N 
loading cycles, when the surface of the component part is described by the equation y = 
Y(N, x)]. In this case, with the aid of (2.3.6) [or (2.3.5)], we have 

l o b  

(N, x, y ) =  ,[ ! (0, ~, y, Zo) eZo.~,~ (o, ~, y). 
D 

Here ~0k = ~0k (N, x, y) is the half length of the crack at the initial instant of time, 
when after N loading cycles it reaches the value of s from (3.1). Subsequently, we will 
understand wear to refer to the conditions under which 

I (N, y,,  l,) > I~, 

and we w i l l  u n d e r s t a n d  d i s i n t e g r a t i o n  t o  be  r e p r e s e n t e d  by t h e  c o n d i t i o n s  u n d e r  wh ich  

I (N, + ~ ,  + ~ )  - I (N, y,,  l.) < G. 

The c o n s t a n t s  s  I w, and I p  a r e  d e t e r m i n e d  e x p e r i m e n t a l l y .  

I n  t h e  p r o c e s s  o f  wear  t h e  s u r f a c e  o f  a g i v e n  componen t  p a r t  w i l l  be  s u b j e c t e d  t o  
d i s p l a c e m e n t .  I t  i s  o b v i o u s  t h a t  t h i s  d i s p l a c e m e n t  o f  t h e  b o u n d a r i e s  o f  t h e  body w i t h i n  
5N l o a d i n g  c y c l e s ,  r e s u l t i n g  f rom wea r  and s t r a t i f i c a t i o n ,  c o i n c i d e s  w i t h  t h e  i n c r e a s i n g  
d e p t h  o f  t h e  d e s t r o y e d  l a y e r  o f  t h e  m a t e r i a l  w i t h i n  t h i s  t i m e .  Hence we f i n d  

(3.3) 

(3.4) 

r (N, x) = ~7~ ~u [~ - ~ (N, x, u)] dy, 

~o = ~ [I - ~ (x,  x, y)I d,j 
Q~ 

(3.5) 

[y,, included in (3.2), is found from (3.3)]. 

When we take into consideration the focus of the destruction and the independence 
of the realization of the disintegration effect at various points within the material of 
the component part, we arrive at the conclusion that the disintegration depends on the 
weakest element of the material. The probability of an absence of disintegration as repre- 
sented by P(N) will therefore assume the form 

P ( N ) =  rain p ( N , x , y ) ,  
~;y~C~ x 

where  t h e  q u a n t i t y  y ,  i s  d e t e r m i n e d  f r o m  t h e  c r i t e r i o n  o f  f a t i g u e  wea r  ( 3 . 3 ) ,  w h i l e  C~ x 
r e p r e s e n t s  an a d d i t i o n  t o  fix up t o  t h e  i n t e r v a l  (-'co, Y(N, x ) ) .  H e r e ,  t h e  d i s i n t e g r a t i o n  
p r o c e s s  o b v i o u s l y  o c c u r s  u n d e r  c o n d i t i o n s  in  wh ich  c r i t e r i o n  ( 3 . 4 )  h a s  been  f u l f i l l e d .  
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4. Time-Variable and Stochastic Loading. Let us examine a periodic cyclical loading 
regime such that the amplitude of the maximum contact load assumes values of q(N) = qi for 
kN 0 + n i < N ~ kN 0 + ni+ I (i = 0 ..... j). Here No represents the period of change in 
load; n i are nonnegative numbers: no = 0, nj+ I = No; k = 0, 1 .... 

The method detailed above to describe contact fatigue can be extended to the case 
under consideration. In situations of practical importance No is negligibly small in compari- 
son to the number N of loading cycles within which linear wear or the probability of disin- 
tegration change by perceptible amounts. Therefore, with sufficient accuracy, we can deter- 
mine the orientation angle ~i corresponding to the i-th amplitude of qi from the following 
equation [see (2.1.3)]: 

k2~(~i) = O, ~ = O, , . . ,  i ,  

while the resulting angle ~m of crack propagation can be determined from the following 
equation : * 

tg a ~  = hnik~o'~ sin al Anikloi cos ai, 
i = 0  

(~.1) 

( 4 . 2 )  

The average value of Mkl0 in the quantity kl0, which should be used in place of the latter 
throughout in the relationships of Secs. 1-3, can be taken in the form 

l [(Zo ; (4.3) 

In (4.2) and (4.3) the quantities kz0 i are calculated by means of the angles ai from (4.1). 
With a continuous change in q(N) the sums in (4.2) and (4.3) are replaced by the appropriate 
integrals. 

In the stochastic distribution of q(t) with the probability density fq(t) relationships 
(4.1) and (4.3) have the following analogs: 

[ k2(t,a)/q(t)dt=O, Mk~o= [! k~o(t)fq(t)dt] 1/(~'), 

where ~t is the carrier fq(t); k10(t) and k2(t, a) are the values of the coefficients k10 
and k 2 when q = q(t). 

We should note that if the development of cracks is described by the Paris equation, 
then with a time-constant external load we can demonstrate that steadywear cannot be realized. 

Thus, on the basis of our investigation into the single mechanism of fatigue-crack 
formation we initially formulated the statistical model of fatigue wear and disintegration, 
taking into consideration the original contamination of the material, its resistance to 
crack formation, and the contact and residual stresses. 
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AN ULTRASOUND METHOD FOR EXPERIMENTAL EVALUATION OF FIELD 

NONUNIFORMITIES IN INTERNAL DYNAMIC STRESSES 

V. P. Lebedev and V. M. Nodyushkin UDC 534.1 

The dynamically stressed state of machine elements and structures is determined through 
the measurement of the vibrations at the surfaces of these elements. Data relating to 
the structure of the elastic field within these elements are obtained through sequential 
calculations [i] based on mathematical relationships known to us from the theory of elastic- 
ity. These methods are based on measurements and calculations which have proved themselves 
in evaluating the structure of a static and quasistatic elastic field, but they become 
virtually useless when consideration must be given to the wavelike nature of the field. 
However, an increasing number of problems is encountered in engineering, where it is pre- 
cisely these wave processes in machines and constructions that must be subjected to study 
[2]. There arises a need to find new principles for the experimental evaluation of field 
structure. 

i. Let us turn to the studies [3, 4] where it is proposed to use the phenomenon of 
nonlinear interaction between elastic waves. The essence of this proposal lies in the 
fact that a plane monochromatic ultrasonic wave, on reaching a zone of a rather powerful 
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